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Abstract
For more than a decade now, the chiral Potts model in statistical mechanics has
attracted much attention. A number of people have written quite extensively
about it. The solutions give rise to a curve over C. Au-Yang and Perk found
a large subgroup of the automorphism group of this curve. In this letter, we
compute the automorphism group precisely.

PACS number: 05.50.+q

1. Introduction

The chiral Potts model, of statistical mechanics, now has a venerable history. The star–triangle
relations (the Yang–Baxter equations) impose constraints on the parameters. For the N -state
chiral Potts model, these equations determine a curve in complex projective 3-space P

3, of
genus N2(N − 2)+ 1. The geometry of this curve has been one of the mysteries of the subject.
Throughout this letter, we will assume N � 3. Then the genus of the chiral Potts curve is �2,
and the automorphism group is finite.

Barry McCoy has been challenging algebraic geometers to use algebraic geometry to tell
him something new about the chiral Potts model. He issued a general challenge to algebraic
geometers, as well as several more specific ones, to us. There are many of these questions that
we do not yet understand. But here is one we can answer.

In [1], Au-Yang and Perk found a group G, of order 4N3, acting on this curve. The group
has been very useful; the reader is referred particularly to the elegant [2] and [3]. But the
problem of determining the full automorphism group has remained. The aim here is to solve
this, as follows:

0305-4470/01/490715+06$30.00 © 2001 IOP Publishing Ltd Printed in the UK L715

http://stacks.iop.org/ja/34/L715


L716 Letter to the Editor

Theorem 1.1. Let N (the number of states) be an integer N � 3. For every pair (k, k′) ∈ C
2

with k2 + {k′}2 = 1, and k �= 0 �= k′, there is a Yang–Baxter curve X = X(k, k′).

(i) There is an exact sequence

1 −→ H −→ AutX −→ A −→ 1,

where H is a copy of (Z/N)3 and A is a subgroup of the symmetric group S4.
(ii) There are exactly 12 points (k, k′), corresponding to the zeros of (k2 +1)(k2 −2)(2k2 −1),

for which A is the dihedral group D8 and AutX has order 8N3.
(iii) There are exactly eight points (k, k′), corresponding to the zeros of k4 − k2 + 1, for which

A is the alternating group A4 and AutX has order 12N3.
(iv) Otherwise A is the 4-group V4 and AutX is the group described by Au-Yang and Perk, of

order 4N3.
(v) In every case AutX is a subgroup of the normalizer of a maximal torus in PGL4(C) and

there is an elliptic curve E = E(k, k′) such that A = AutE/(±1).

The proof consists of first finding an upper bound for AutX, then a lower bound, by writing
down automorphisms, and observing the coincidence of these bounds.

2. An upper bound on the automorphism group

We begin by recalling a crucial result, due to Ciliberto and Lazarsfeld. Recall that a grd on a
smooth projective curve C is a linear system of degree d and (projective) dimension r . A grd
that is without base-points is identified with a morphism φ : C → �, where � is a curve in P

r

lying in no hyperplane and d = degφ. deg�.

Theorem 2.1. Let X be a smooth curve, which is embedded in P
3 as a complete intersection

of two surfaces of degrees h, k � 3. Then the g3
hk defining this embedding is the unique g3

hk on
X.

Proof. For h, k � 4, this is theorem 2.6 in [4]. For h = 3, k � 3, see corollary 2.5 loc.
cit. Note that in the case h = k � 3, which is the case that interests us here, the inequalities
simplify, and the proof of theorem 2.6 of [4] can be seen to also handle the case h = k = 3. �

Corollary 2.2. Let X be a smooth curve, which is embedded in P
3 as a complete intersection

of two surfaces of degrees h, k � 3. Any automorphism of X extends to an automorphism of
P

3.

Proof. Any automorphism of X extends to an automorphism of the unique g3
hk of

theorem 2.1. �
Next we specialize this to the curve of the Yang–Baxter equations. We remind the reader.

The number of states is an integer N � 3. Let k, k′ be auxiliary parameters, with k �= 0 �= k′,
so that k2 + {k′}2 = 1. The curve X is the smooth complete intersection determined by the two
equations

S1 := aN + k′bN − kdN = 0

S2 := k′aN + bN − kcN = 0

where a, . . . , d are homogeneous co-ordinates on P
3. By corollary 2.2, the action of AutX on

X extends to an action on P
3.

Lemma 2.3. AutX permutes the set of four points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and
(0, 0, 0, 1).
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Proof. Let V denote the vector space of degree N surfaces containing X. Then V is two
dimensional. Denote by L its projectivization. Then AutX acts on L and L is a copy of P

1.
Now consider Hessians. The relevant facts about the Hessian H(S) of a hypersurface S

in P
n are that H(S) is of degree n + 1 in the coefficients of S, it is non-zero if S is smooth and

it vanishes identically if S is a cone. So the Hessian defines a linear system of degree 4 on L.
Casual inspection shows that L contains a smooth member (a Fermat surface), so the Hessian
is not identically zero on L. Hence L contains at most 4 cones. However, there are at least 4
cones in L, namely, the two equations given above and their linear combinations

S3 := k′S1 − S2 = −k2bN + kcN − kk′dN

S4 := S1 − k′S2 = k2aN + kk′cN − kdN

whose vertices are the points mentioned above, and we are done. �

Denote by H the kernel of the action of AutX on L, so that there is an exact sequence

1 −→ H −→ AutX −→ A −→ 1

where A is a subgroup of AutL preserving a 4-tuple, so a subgroup of S4. The elliptic curve
E = E(k, k′) is the double cover of P

1 branched at the four points
{
0, 1,∞, 1

k′2
}
.

Lemma 2.4. H is isomorphic to (Z/N)3.

Proof. By lemma 2.3, H fixes the points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1),
and so is a quotient of a subgroup M in GL4(C) consisting of diagonal matrices. It is then
elementary to verify that we can take the elements ofM to have orderN , so thatH is identified
with the quotient of (Z/N)4 by the subgroup of scalar matrices. Of course, the element of H
represented by (r, s, t, u) acts via (a, b, c, d) �→ (ra, sb, tc, ud). �

To get an upper bound on AutX we shall bound A. For this, it is enough to enumerate
the stabilizers in PGL2 of the various 4-tuples of points in L. This result is very well known,
but for lack of a suitable reference we include a proof. Regard the space of 4-tuples as the
projectivization of the vector space U4 of binary quartics, which, with its PGL2-action, was
analysed extensively in the 19th century. We recall some of these results, which may be found
in [5], for example.

Let g = ∑ (4
i

)
Aix

4−iyi ∈ U4. Then the ring of PGL2-invariants is a polynomial ring
C[S, T ], where

S = A0A4 − 4A1A3 + 3A2
2

and

T = det

[
A0 A1 A2

A1 A2 A3

A2 A3 A4

]
.

It follows from the geometric interpretation of the ring of invariants, due to Mumford [7], that
for any g ∈ U4 with distinct linear factors, the orbit closure O(g) in P(U4) is a hypersurface
and is either of degree 2 and defined by S = 0, or of degree 3 and defined by T = 0, or of
degree 6 and defined by λS3 − µT 2 for some λ,µ.

Now fix g ∈ U4, with distinct linear factors. Regard g as giving a point in P(U4) and
consider its stabilizer Stabg in PGL2. The orbit of such a point is determined by the ratio
S3/T 2. In particular, S(g) = 0 if and only if g is equivalent to x3y +

√
3x2y2 + xy3 and

T (g) = 0 if and only if g is equivalent to x4 + y4.

Proposition 2.5. Stabg is A4 if S(g) = 0, D8 if T (g) = 0 and V4 otherwise.
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Proof. It is an easy exercise to show that Stabg always contains V4. Moreover, O(g) has
degree 4.3.2/#(Stabg); this is the special case n = 4 of proposition 1.10 of [6] (a result they
attribute to Enriques and Fano). Since Stabg is a subgroup of S4, the result follows from the
discussion above. �

We need to translate this into statements about the parameters k, k′. Note that kS3 =
−S1 + k′S2 and kS4 = k′S1 − S2, so that if g ∈ P(U4) corresponds to X = X(k, k′),
then g = xy(x + k′y)(k′x + y). It follows that 6S(g) = 1 − k2 + k4 and −432T (g) =
(k2 − 2)(k2 + 1)(2k2 − 1).

Corollary 2.6. There is a short exact sequence

1 −→ (Z/N)3 −→ AutX −→ A −→ 1

where A is a subgroup of A4 if k4 − k2 + 1 = 0, of D8 if (k2 − 2)(k2 + 1)(2k2 − 1) = 0 and of
V4 otherwise.

Proof. This is an immediate consequence of the previous results. �

3. A lower bound on the automorphism group

We have already observed an action of H , a copy of (Z/N)3, on X = X(k, k′). Put
ζ = ζ2N = exp(2π i/2N).

Lemma 3.1. The maps σ, τ : P
3 −→ P

3 defined by

σ(a, b, c, d) = (b, a, d, c)

and

τ(a, b, c, d) = (d, ζ c, ζ−1b, a)

are automorphisms of X.

Proof. Easy. �
Consequently, the group G generated by H and σ, τ is a subgroup of AutX. It is the

Au-Yang–Perk group.

Lemma 3.2. H is a normal subgroup of G, G/H ∼= V4 and G has order 4N3.

Proof. There is a permutation action ofG on the four points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),
(0, 0, 0, 1), with kernel H . It is clear that the image of this action is V4. �

To go further we consider automorphisms of the whole family of chiral Potts curves. This
means that we take the curve Y of all points (k, k′) ∈ C

2 that satisfy

k2 + {k′}2 = 1 k �= 0 �= k′

and the subvariety X of P
3 × Y defined by the equations

S1 := aN + k′bN − kdN = 0

S2 := k′aN + bN − kcN = 0

S3 := dN − k′cN − kaN = 0

S4 := −k′dN + cN − kbN = 0.

Note that Y is the complement in P
1 of a certain 6-tuple D. There is a natural projection

f : X −→ Y . The fibre over (k, k′) ∈ Y is the curve X(k, k′). The action of G on each curve
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X(k, k′) is in fact an equivariant action on f : X −→ Y , covering the trivial action on Y . The
next thing to do is to extend this to an equivariant action of a certain larger group G. For this,
put ω = exp(2π i/4N) and define maps σ1, σ2, σ3 : P

3 × Y −→ P
3 × Y by

σ1(a, b, c, d; k, k′) = (b, a, ω−1c, ω−1d; ik/k′, 1/k′)
σ2(a, b, c, d; k, k′) = (ωa, c, b, ωd; 1/k, ik′/k)

and

σ3(a, b, c, d; k, k′) = (ωa, ωb, d, c; ik/k′, 1/k′).

We regard these σi also as maps Y −→ Y , by forgetting the co-ordinates a, b, c, d.

Lemma 3.3. The σi are equivariant automorphisms of the map f : X −→ Y .

Proof. This is a matter of proving that each σi preserves the OY -module V generated by
S1, . . . , S4. This is a routine, if unenlightening, calculation and is left to the reader. (Note that
OY is the ring C[k, k′, 1/k, 1/k′]/(k2 + {k′}2 − 1).) �

We define G to be the group generated by H and σi . Note that AutY is identified with
the stabilizer in PGL2 of D. Since f is G-equivariant, there is a natural homomorphism
φ : G −→ AutY ; denote the image of G by K and that of σi by si .

Lemma 3.4. The kernel of φ contains G.

Proof. What needs to be proved is that G contains a group acting trivially on Y , and whose
action on the fibres is that of G. There is no problem with the subgroup H . Put

σ = σ1σ
−1
3 and τ = σ−1

3 σ1σ2σ
−1
1 σ3σ

−1
2 .

The reader can compute that the above elements of G act trivially on Y , and agree (modulo H )
with the σ and τ of lemma 3.1. �
Lemma 3.5. There is an inhomogeneous co-ordinate t on Y given by t = 1−k′

k
and in terms

of t , s1 and s2 are the fractional linear transformations represented by the matrices

M1 =
(
ζ8 0
0 ζ−1

8

)
and

M2 = 1√−2

(
i 1
1 i

)
respectively.

Proof. Elementary calculation. �
Corollary 3.6. K is generated by the images in PGL2 = PSL2 of the matrices Mi .

Proof. Immediate. �
Lemma 3.7. If u, v are homogeneous co-ordinates on P

1 such that t = u/v, then the deleted
6-tuple D is defined by the polynomial h := uv(u4 − v4).

Proof. Immediate. �
Lemma 3.8. K is the octahedral group (that is, the rotation group of a regular octahedron)
isomorphic to S4.

Proof. Since K is finite, we can identify P
1 with the Riemann sphere in such a way that K is a

subgroup of PSU2, which is isomorphic to SO3(R), and then the linear factors of h define the
vertices of a regular octahedron. From this point of view, s1 and s2 appear as rotations though
π/2 about orthogonal axes, and so generate the rotation group of the octahedron. �
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4. Completion of the proof of theorem 1.1

For y = (k, k′) ∈ Y , let Ky , respectively Gy , denote the stabilizer of y in K , respectively G.
Then there is a homomorphism φy : Gy −→ Ky whose kernel contains G. By construction,
Gy is a subgroup of AutX, when X = X(k, k′). Now Ky is cyclic of order 4, 3, 2, 1 according
to whether y is a vertex, a face-center, an edge-center, or none of these, on the octahedron.
Now the vertices of the octahedron correspond to points (k, k′) where the chiral Potts curve
is degenerate (that is, singular). Hence Gy is respectively of order 12N3, 8N3, 4N3, and we
deduce that AutX = Gy .

The identification of the quotient group A with AutE/(±1) for some elliptic curve E

follows from the fact that A is the stabilizer in PGL2 of a 4-tuple of distinct points in P
1. We

take E to be the double cover of P
1 ramified in these four points, so that E can be given, in

affine co-ordinates, by the equation y2 = x(x − 1)(x − {k′}−2).

We are grateful to Rodney Baxter, Murray Batchelor, David Brydges, Brian Davies, Joe Harris
and Barry McCoy for helpful conversations and correspondence.
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